extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C22xC4) = C2xD4:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.1(C2^2xC4) | 64,95 |
C4.2(C22xC4) = C2xQ8:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 64 | | C4.2(C2^2xC4) | 64,96 |
C4.3(C22xC4) = C23.24D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.3(C2^2xC4) | 64,97 |
C4.4(C22xC4) = C23.36D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.4(C2^2xC4) | 64,98 |
C4.5(C22xC4) = C23.37D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | | C4.5(C2^2xC4) | 64,99 |
C4.6(C22xC4) = C23.38D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.6(C2^2xC4) | 64,100 |
C4.7(C22xC4) = C2xC4wrC2 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | | C4.7(C2^2xC4) | 64,101 |
C4.8(C22xC4) = C42:C22 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | 4 | C4.8(C2^2xC4) | 64,102 |
C4.9(C22xC4) = C4xD8 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.9(C2^2xC4) | 64,118 |
C4.10(C22xC4) = C4xSD16 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.10(C2^2xC4) | 64,119 |
C4.11(C22xC4) = C4xQ16 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 64 | | C4.11(C2^2xC4) | 64,120 |
C4.12(C22xC4) = SD16:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.12(C2^2xC4) | 64,121 |
C4.13(C22xC4) = Q16:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 64 | | C4.13(C2^2xC4) | 64,122 |
C4.14(C22xC4) = D8:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.14(C2^2xC4) | 64,123 |
C4.15(C22xC4) = C8oD8 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | 2 | C4.15(C2^2xC4) | 64,124 |
C4.16(C22xC4) = C8.26D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | 4 | C4.16(C2^2xC4) | 64,125 |
C4.17(C22xC4) = C2xC4xQ8 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 64 | | C4.17(C2^2xC4) | 64,197 |
C4.18(C22xC4) = C4xC4oD4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.18(C2^2xC4) | 64,198 |
C4.19(C22xC4) = C22.11C24 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | | C4.19(C2^2xC4) | 64,199 |
C4.20(C22xC4) = C23.32C23 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.20(C2^2xC4) | 64,200 |
C4.21(C22xC4) = C23.33C23 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.21(C2^2xC4) | 64,201 |
C4.22(C22xC4) = C2xC8oD4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 32 | | C4.22(C2^2xC4) | 64,248 |
C4.23(C22xC4) = Q8oM4(2) | φ: C22xC4/C2xC4 → C2 ⊆ Aut C4 | 16 | 4 | C4.23(C2^2xC4) | 64,249 |
C4.24(C22xC4) = C2xC4.Q8 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 64 | | C4.24(C2^2xC4) | 64,106 |
C4.25(C22xC4) = C2xC2.D8 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 64 | | C4.25(C2^2xC4) | 64,107 |
C4.26(C22xC4) = C23.25D4 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 32 | | C4.26(C2^2xC4) | 64,108 |
C4.27(C22xC4) = M4(2):C4 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 32 | | C4.27(C2^2xC4) | 64,109 |
C4.28(C22xC4) = C2xC8.C4 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 32 | | C4.28(C2^2xC4) | 64,110 |
C4.29(C22xC4) = M4(2).C4 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 16 | 4 | C4.29(C2^2xC4) | 64,111 |
C4.30(C22xC4) = C2xC42:C2 | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 32 | | C4.30(C2^2xC4) | 64,195 |
C4.31(C22xC4) = C22xM4(2) | φ: C22xC4/C23 → C2 ⊆ Aut C4 | 32 | | C4.31(C2^2xC4) | 64,247 |
C4.32(C22xC4) = C2xC8:C4 | central extension (φ=1) | 64 | | C4.32(C2^2xC4) | 64,84 |
C4.33(C22xC4) = C4xM4(2) | central extension (φ=1) | 32 | | C4.33(C2^2xC4) | 64,85 |
C4.34(C22xC4) = C8o2M4(2) | central extension (φ=1) | 32 | | C4.34(C2^2xC4) | 64,86 |
C4.35(C22xC4) = C2xM5(2) | central extension (φ=1) | 32 | | C4.35(C2^2xC4) | 64,184 |
C4.36(C22xC4) = D4oC16 | central extension (φ=1) | 32 | 2 | C4.36(C2^2xC4) | 64,185 |